紙の実装 - YOLOv7: トレーニング可能な景品の袋は、リアルタイムのオブジェクト検出器の新しい最先端を設定します
MS ココ
モデル | テストサイズ | APテスト | AP50テスト_ | AP75テスト_ | バッチ 1 fps | バッチ 32 の平均時間 |
---|---|---|---|---|---|---|
YOLOv7 | 640 | 51.4% | 69.7% | 55.9% | 161fps _ | 2.8ミリ秒 |
YOLOv7-X | 640 | 53.1% | 71.2% | 57.8% | 114fps _ | 4.3ミリ秒 |
YOLOv7-W6 | 1280 | 54.9% | 72.6% | 60.1% | 84fps _ | 7.6ミリ秒 |
YOLOv7-E6 | 1280 | 56.0% | 73.5% | 61.2% | 56fps _ | 12.3ミリ秒 |
YOLOv7-D6 | 1280 | 56.6% | 74.0% | 61.8% | 44fps _ | 15.0ミリ秒 |
YOLOv7-E6E | 1280 | 56.8% | 74.4% | 62.1% | 36fps _ | 18.7ミリ秒 |
Docker 環境 (推奨)
# create the docker container, you can change the share memory size if you have more.
nvidia-docker run --name yolov7 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov7 --shm-size=64g nvcr.io/nvidia/pytorch:21.08-py3
# apt install required packages
apt update
apt install -y zip htop screen libgl1-mesa-glx
# pip install required packages
pip install seaborn thop
# go to code folder
cd /yolov7
yolov7.pt
yolov7x.pt
yolov7-w6.pt
yolov7-e6.pt
yolov7-d6.pt
yolov7-e6e.pt
python test.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.65 --device 0 --weights yolov7.pt --name yolov7_640_val
結果が得られます。
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.51206 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.69730 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.55521 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.35247 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.55937 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.66693 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.38453 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.63765 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.68772 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.53766 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.73549 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.83868
精度を測定するには、Pycocotools の COCO アノテーションを
./coco/annotations/instances_val2017.json
データ準備
bash scripts/get_coco.sh
train2017.cacheして
val2017.cache、ラベルを再ダウンロードすることを強くお勧めします。
シングル GPU トレーニング
# train p5 models
python train.py --workers 8 --device 0 --batch-size 32 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml
# train p6 models
python train_aux.py --workers 8 --device 0 --batch-size 16 --data data/coco.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6.yaml --weights '' --name yolov7-w6 --hyp data/hyp.scratch.p6.yaml
複数の GPU トレーニング
# train p5 models
python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch-size 128 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml
# train p6 models
python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_aux.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch-size 128 --data data/coco.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6.yaml --weights '' --name yolov7-w6 --hyp data/hyp.scratch.p6.yaml
yolov7_training.pt
yolov7x_training.pt
yolov7-w6_training.pt
yolov7-e6_training.pt
yolov7-d6_training.pt
yolov7-e6e_training.pt
カスタム データセットのシングル GPU 微調整
# finetune p5 models
python train.py --workers 8 --device 0 --batch-size 32 --data data/custom.yaml --img 640 640 --cfg cfg/training/yolov7-custom.yaml --weights 'yolov7_training.pt' --name yolov7-custom --hyp data/hyp.scratch.custom.yaml
# finetune p6 models
python train_aux.py --workers 8 --device 0 --batch-size 16 --data data/custom.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6-custom.yaml --weights 'yolov7-w6_training.pt' --name yolov7-w6-custom --hyp data/hyp.scratch.custom.yaml
reparameterization.ipynbを参照してください
ビデオで:
python detect.py --weights yolov7.pt --conf 0.25 --img-size 640 --source yourvideo.mp4
画像上:
python detect.py --weights yolov7.pt --conf 0.25 --img-size 640 --source inference/images/horses.jpg
Pytorch から CoreML (および MacOS/iOS での推論)
NMS (および推論) を使用した ONNX への Pytorch
python export.py --weights yolov7-tiny.pt --grid --end2end --simplify \
--topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640 --max-wh 640
NMS (および推論) を使用した Pytorch から TensorRT への変換
wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-tiny.pt
python export.py --weights ./yolov7-tiny.pt --grid --end2end --simplify --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640
git clone https://github.com/Linaom1214/tensorrt-python.git
python ./tensorrt-python/export.py -o yolov7-tiny.onnx -e yolov7-tiny-nms.trt -p fp16
wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-tiny.pt
python export.py --weights yolov7-tiny.pt --grid --include-nms
git clone https://github.com/Linaom1214/tensorrt-python.git
python ./tensorrt-python/export.py -o yolov7-tiny.onnx -e yolov7-tiny-nms.trt -p fp16
# Or use trtexec to convert ONNX to TensorRT engine
/usr/src/tensorrt/bin/trtexec --onnx=yolov7-tiny.onnx --saveEngine=yolov7-tiny-nms.trt --fp16
テスト済み: Python 3.7.13、Pytorch 1.12.0+cu113
keypoint.ipynbを参照してください。
instance.ipynbを参照してください。
@article{wang2022yolov7, title={{YOLOv7}: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors}, author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark}, journal={arXiv preprint arXiv:2207.02696}, year={2022} }
Yolov7-セマンティック & YOLOv7-パノプティック & YOLOv7-キャプション